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A freely floating motion-trapping structure can be defined as one or more rigid
bodies floating on the surface of a fluid which extends to infinity in at least one
direction, whose free motion under its natural hydrostatic restoring force is coupled
to that of the surrounding fluid in such a way that no waves are radiated to infinity.
The resulting local time-harmonic oscillation of the structure and the surrounding
fluid is called a motion-trapped mode. Such a structure would, if displaced slightly
from its equilibrium position and released, ultimately oscillate indefinitely at the
trapped-mode frequency. Previous examples of motion-trapping structures have been
devised using an inverse approach in which the shape of pairs of such structures is
determined implicitly by sketching certain streamlines. In this paper an alternative
direct approach to the construction of motion-trapping structures in the form of a
pair of identical floating cylinders of rectangular cross-section in two dimensions is
presented. It is also shown that a thick-walled axisymmetric heaving circular cylinder
can act as a motion-trapping structure.

1. Introduction
The classical linear theory of the interaction of waves with fixed or floating bodies

has presented challenging theoretical problems for over 150 years. One of the most
fundamental of these is the question of the uniqueness of solutions to the governing
equations. While such questions can be expressed succinctly in the terminology of
spectral theory for unbounded operators, a more physical interpretation of a non-
uniqueness is the existence of a local bounded oscillation at a well-defined frequency
in the vicinity of a fixed rigid body or bodies on or under a free surface extending to
infinity in at least one direction. Such oscillations, or trapped modes, are known to
exist in a certain class of three-dimensional problems in which there is a periodicity
in the trapped mode oscillation in one horizontal direction, aligned with a geometric
periodicity. These are often referred to as channel trapped modes as the problem
is equivalent to that describing a trapped mode in a three-dimensional rectangular
channel of uniform width. In contrast, it had been generally believed that trapped
modes did not exist in two dimensions and this was confirmed by a number of partial
results usually relating to single fixed bodies. However McIver (1996) was able to show,
using an inverse method, that certain pairs of fixed surface-piercing two-dimensional
cylinders were able to support trapped modes of a particular frequency. Since then
numerous examples of fixed trapping structures have been discovered in both two
dimensions and three-dimensional ‘non-channel’ problems. For a fairly recent survey,
see Kuznetsov, Maz’ya & Vainberg (2002).
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A key feature of these trapped modes is that they occur in the presence of
fixed bodies. However, recently interest has shifted to the question of whether
motion-trapped modes arise where the body is free to move under its natural or
externally applied restoring force at the same frequency as the localized trapped
mode. Thus, these motion-trapped modes correspond to a non-uniqueness in the
corresponding scattering problem involving bodies that are free to move. Moreover,
in the absence of viscous damping, such a motion-trapping structure would, given an
initial displacement or velocity from its equilibrium state, eventually settle down to
a simple harmonic motion at the trapped-mode frequency. Recently we provided the
first example of a submerged motion-trapping structure in the form of a single two-
dimensional buoyant circular cylinder tethered to the bottom in fluid of finite depth
(Evans & Porter 2007). The construction made use of the fact, previously overlooked,
that the waves radiated to infinity by the forced motion of such a cylinder could
vanish at certain depths of submergence and wave frequency, a necessary condition
for a motion-trapping structure. At that frequency, it also proved possible to satisfy
the second condition for trapping, which is that there should be a balance between
the inertia forces on the cylinder, including that due to the surrounding fluid, and
any linearized restoring forces, in this case the component of the tension in the tether
acting on the cylinder.

A more natural motion-trapping structure is one which is freely floating and where
the only restoring force is hydrostatic and most attention has been paid to finding
examples of this type. Notable in this regard is the work of McIver & McIver (2006)
who first derived the conditions described above for a motion-trapping structure. They
showed that for freely floating structures under hydrostatic restoring forces only, the
second condition for trapping could be replaced by the requirement that the dipole
moment for the potential describing the motion should vanish at infinity. They used
an inverse method similar to that used by McIver (1996) described above, to construct
potentials which were both wave free and satisfied the zero-dipole-moment condition.
By sketching the corresponding streamlines they were able to construct ‘mirror image’
pairs of identical freely floating bodies as trapping structures. Subsequently (McIver
& McIver 2007), they were able to extend the idea to construct an axisymmetric freely
floating torus of a specific shape which acted as a motion-trapping structure. In this
paper we shall also seek freely floating trapping structures under hydrostatic forces
but we shall take a different more direct approach which provides a constructive
technique to finding pairs of floating bodies of simple shapes which can support
motion-trapping.

The examples of McIver & McIver (2006, 2007) and those we shall construct here
share the property that there is an internal portion of the free surface, bounded
laterally by a surface-piercing structure. In the naval hydrodynamics community such
configurations are often referred to as ‘moonpools’ and interest often centres on
the location and nature of near resonances. In the current context of freely floating
structures the most relevant work is that of Wang & Wahab (1971), who investigated
the free heaving of a pair of cylinders floating in the free surface, and Yeung & Seah
(2007), which is explained in more detail in the next paragraph.

The main focus of this paper is on the two-dimensional interaction of waves
with floating cylinders of rectangular cross-section, although we extend this to
consider three-dimensional wave interaction with a floating axisymmetric shell with
a rectangular wall cross-section. Various hydrodynamic problems associated with
each geometrical configuration need to be solved. In each case, this is achieved
using a domain decomposition approach, in which the solution in each fundamental
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rectangular domain is represented by the appropriate eigenfunction expansion. This
is a standard and practical approach to take. Indeed it has been implemented most
recently by Yeung & Seah (2007) whose geometrical configuration is identical to one
of those we consider here. However, we take a different approach to formulating
each solution, choosing to derive integral equations in the matching process, rather
than matching mode-by-mode as in Yeung & Seah (2007). The integral equations are
then solved using a Galerkin approximation which involves taking explicit account of
the singularity in the velocity field at any sharp corners in the rectangular geometry
which occur at the extremities of the matching intervals. A similar approach can
be found in Porter (1995) and Evans & Fernyhough (1995), for example. Although
arguably more complicated to formulate, the integral equation approach has some
significant advantages over the mode-matching approach taken by Yeung & Seah
(2007). Principally, we can guarantee a high degree of accuracy in the computation of
the hydrodynamic coefficients (at least five significant figures) by inverting relatively
small systems of equations (i.e. less than 10 by 10). In contrast, mode-matching is less
accurate and requires the inversion of much larger systems. The degree of accuracy is
critical in providing conclusive numerical evidence of the existence of motion-trapped
modes, as the balance between various hydrodynamic coefficients needed for this is
rather subtle (see the discussion in § 5).

Since the details of the formulation of the three hydrodynamic problems are
rather complicated, and the methods are well-established in the literature, we list in
Appendices A, B and C the essential ingredients that are required to produce our
numerical results.

The plan of the paper is as follows. In the next section, we provide an argument
for the generation of motion-trapping structures, based on the existence of isolated
bodies which are capable of reflecting all incident wave energy. In § 3, we determine
criteria for total reflection of isolated structures moving in free response to the
surrounding fluid, based on standard hydrodynamic coefficients, namely added mass,
damping, reflection and transmission coefficients. In § 4, the theory is applied to
floating rectangular cylinders and in § 5, pairs of cylinders are considered and the
exact configurations are compared with those predicted via the theory of § 2. Three-
dimensional axisymmetric structures are also considered. Finally, some conclusions
are drawn in § 6.

2. Arguments for the construction of motion-trapping structures
The two conditions derived by McIver & McIver (2006) which need to be satisfied

simultaneously at a given frequency for a motion-trapping structure moving in a
single mode of motion (assumed to be heave throughout this paper), in either two or
three dimensions, are

(M + a(ω))ω2 − λ = 0 (2.1)

and

b(ω) = 0. (2.2)

Here a(ω), b(ω) are, respectively, the heave added mass and heave radiation damping
coefficients for the structure, M is the mass of the structure, and λ = ρgW where
W is the waterplane area of the structure, ρ the density of the fluid and g the
acceleration due to gravity. We shall be concerned with the construction of trapping
structures in the form of a pair of identical heaving cylinders in two dimensions,
and their counterpart in three dimensions, a heaving axisymmetric thick cylinder.
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Much of the argument will be based on the two-dimensional catamaran structure
which is where we begin. Consider the requirement that the radiation damping
should vanish for the heaving cylinder pair. If that were possible at a particular
frequency the fluid motion between the cylinders would be a standing wave at that
frequency with a local evanescent field external to the cylinders. The same argument
would apply if the two cylinders were widely spaced in which case it is possible
to apply a wide-spacing argument. Thus consider an incident wave from infinity
which excites a single freely floating heaving cylinder giving rise to reflected and
transmitted waves. If now for a particular frequency, the transmission coefficient T1

vanishes, the incident wave will be totally reflected so that the reflection coefficient R1

satisfies |R1| = 1. We now imagine an identical freely floating cylinder a large distance
2b upstream of the first, moving as its mirror image in the line midway between
them. The reflected wave will in turn be totally reflected and it is easily shown that
a symmetric standing wave or motion-trapped mode can be set up if the spacing
satisfies

kb = − 1
2
arg{R1} + nπ (2.3)

where k is the wavenumber (equal to K ≡ ω2/g in deep water and defined by
K = k tanh kh in water of depth h), and n is an integer. It is clear that taken
together the two freely heaving cylinders constitute a motion-trapping structure. Thus
the wide-spacing argument, which neglects the influence of the local field near one
cylinder on the other, has shifted the problem to finding single cylinders which, when
freely floating in response to an incident wave from infinity, are capable of totally
reflecting that wave at a particular frequency. Once such a cylinder has been found,
then (2.3) provides an approximate formula for the spacing required between two such
cylinders to constitute a trapping structure, in terms of the phase of the reflection
coefficient at that frequency. In addition the formula (2.3) provides a starting point
for determining the location of motion-trapped modes when the cylinders move closer
together and local effects can no longer be ignored. We need to find conditions under
which a single cylinder, free to move in a single mode of motion, can totally reflect
the incident wave which is exciting it. These conditions were derived by Evans &
Linton (1989) who were investigating the efficacy of a submerged buoyant tethered
circular cylinder swaying freely in response to an incident wave field as an active
wave reflector. The analysis is repeated in the next section for an arbitrary cylinder,
symmetric about a vertical line, which is free to heave in the presence of an incident
wave field.

3. Scattering by a cylinder in free response to an incident wave
Two-dimensional Cartesian coordinates (x, z) are taken with the origin in the mean

free surface of the fluid and the z-axis pointing downwards with z = h aligned with
the bottom of the fluid, which has density ρ. We consider a single cylinder of mass
per unit length M floating in the surface, free to move in heave response to incident
plane waves of unit amplitude from x = ∞ of angular frequency ω. Then, assuming a
time-dependence of e−iωt , the time-independent velocity potential, φ(x, z) satisfies the
usual linearized equations of motion,

∇2φ = 0 in the fluid,
∂φ

∂z
= Kφ on z = 0, (3.1)
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where K = ω2/g (g being acceleration due to gravity) with the cylinder boundary
condition

n̂·∇φ = n̂·U (3.2)

where n̂ is the outward unit normal and U = U ẑ for heave oscillations. Far from the
cylinder, the potential is described by

φ(x, z) ∼
{

(g/ω)(e−ikx + R1e
ikx)ψ0(z), x → +∞,

(g/ω)T1e
−ikxψ0(z), x → −∞,

(3.3)

where ψ0(z) represents the vertical variation of the velocity potential associated
with propagating waves and k is the positive real root of the dispersion relation
K = k tanh kh, which reduces to K = k in infinite depth. It is our aim in this section
to find the reflection and transmission coefficients, R1 and T1.

Because of the linearity of the governing equations, we write

φ = Uφr + φs (3.4)

where φr is the radiation potential for unit forced heave velocity in the absence of the
incident wave, and φs is the scattered potential due to a unit-amplitude wave incident
from x = +∞ on the cylinder when it is assumed to be held fixed. The constant, U , in
(3.4) is the unknown velocity in heave, to be determined from the equation of motion
of the cylinder.

Thus we have

φr ∼ Ahe
ik|x|ψ0(z), |x| → ∞, (3.5)

where Ah is related to the amplitude of outgoing waves from the cylinder where
n̂·∇φr = n̂· ẑ applies to the wetted surface of the cylinder. Also, n̂·∇φs = 0 and

φs ∼
{

(g/ω)(e−ikx + Reikx)ψ0(z), x → ∞,

(g/ω)T e−ikxψ0(z), x → −∞,
(3.6)

where R and T are the reflection and transmission coefficients for the fixed cylinder.
The coefficients Ah, R and T are determined from the boundary-value problems

specified for φr and φs and depend upon frequency.
It follows from the above definitions that

R1 = R + (ωU/g)Ah, T1 = T + (ωU/g)Ah, (3.7)

in which the cylinder velocity, U , still needs to be determined.
We use the equation of motion for a cylinder of mass per unit length M ,

Fext + Fr + Fs = −iωMU, (3.8)

where the time-independent forces acting on the cylinder are Fs , the vertical wave
exciting force on the fixed cylinder, Fr , the vertical wave radiation force on the
cylinder due to its motion, and Fext , the external force which is simply the vertical
hydrostatic force.

Thus, we write Fext = −iλω−1U with λ = ρgW where W is the waterplane area for
a cylinder intersecting the free surface. The wave radiation force is decomposed into
components in phase with the acceleration and velocity of the body, through

Fr = −(b(ω) − iωa(ω))U (3.9)

where a(ω) and b(ω) are the added mass and radiation damping coefficients,
respectively, of the cylinder in forced heave motion.
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The heave exciting force is not calculated directly. Instead, use is made of a
number of useful reciprocal relations which exist for radiation and scattering problems
involving the potentials φr and φs . For example the Haskind relation connects the
vertical exciting force on the fixed cylinder in incident waves to the amplitude at
x = ∞ due to unit heave velocity of the cylinder. Thus

Fs = ρgAhd(kh) (3.10)

where d(kh) is a depth-dependent term whose explicit definition is unimportant. Next
we have the relation between the radiation damping coefficient and the far-field
amplitude,

b(ω) = ρω|Ah|2d(kh) (3.11)

and finally the Newman relation

R + T = −Ah/Āh (3.12)

connects the scattering coefficients and the phase of the far-field radiated heave
amplitude.

Use of the definition (3.9) and that for Fext in (3.8) now shows that

b(ω)(1 − iC)U = Fs (3.13)

where

C = ((M + a(ω))ω2 − λ)/(b(ω)ω). (3.14)

Elimination of Fs/b(ω) in (3.13) via the reciprocal relations (3.10)–(3.11), followed by
use of (3.12), determines the heave velocity as

U = − g

ωAh

(R + T )

(1 − iC)
(3.15)

and finally use in (3.7) gives

R1 = (CR − iT )/(C + i), T1 = (CT − iR)/(C + i). (3.16)

It follows that

|R1|2 + |T1|2 = |R|2 + |T |2 = 1 (3.17)

since |R ±T | = 1 for vertically symmetric bodies and R/T = iχ where χ is real. Thus
T1 = T (C + χ)/(C + i) and clearly T1 = 0 provided

C = −χ or (M + a(ω))ω2 − λ = −b(ω)ωχ. (3.18)

It is noteworthy that the above analysis is exact and that the far field radiated by a
freely floating cylinder responding to a given incident wave field can be determined
explicitly in terms of the scattered field from a fixed cylinder in that incident field, and
the radiated field due to the forced motion of the cylinder. A similar analysis can be
derived for a cylinder moving freely in either sway or roll, when the condition for T1

to vanish is obtained by replacing −χ by χ in (3.18). In this case there is no vertical
hydrostatic restoring force so that λ would correspond to any external restoring force.
This was the case considered by Evans & Linton (1989).

4. Freely floating cylinders of circular and rectangular cross-sections
In the case of the freely floating cylinder constrained to move in heave, the required

condition for T1 to vanish is equation (3.18) where the opposing hydrostatic force
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Figure 1. Variation of (a) |R|, |T | for a fixed cylinder and |R1|, |T1| for a freely heaving
cylinder and (b) μ, ν, the non-dimensional heave added mass and radiation damping against
Ka = ω2a/g. The cylinder is semi-immersed in the free surface. There are no zeros of
transmission.

gives λ = 2aρg where 2a is the width of the cylinder at the water surface. There would
appear to be no reason why (3.18) should be satisfied in any particular case. First,
a half-immersed floating semicircular cylinder in infinite depth fluid was considered
using multipoles (see Martin & Dixon 1984 for details) and computations of R, T ,
and hence χ , and a(ω), b(ω) were made, from which C could be computed and
the condition (3.18) checked. The curves of reflection and transmission coefficients
against Ka for a fixed cylinder and a cylinder allowed to respond freely in heave are
shown in figure 1(a), whilst the non-dimensional heave added mass, μ = a(ω)/M and
radiation damping ν = b(ω)/Mω (where M = 1

2
ρπa2 is the mass of the cylinder) are

shown alongside in figure 1(b). Thus, it can be seen that T1 fails to vanish at any
value of Ka. However, we have demonstrated that an extension of the analysis in
the preceding section to allow free motion in both heave and sway, applied to the
semi-immersed circular cylinder does give rise to zeros of transmission. This result
will form the subject of a separate paper.

The hydrodynamic coefficients for the half-immersed cylinder in infinite depth
depend upon a single parameter, Ka. It was therefore decided to consider the freely
floating vertical rectangular cylinder, which possesses an extra degree of freedom in
the draught of the cylinder which could be varied and hence make it more likely that
equation (3.18) could be satisfied and a zero of |T1| found. There are strong reasons
to expect that zeros of transmission occur in this case when the rectangle is narrow.
Evans & Morris (1972) proved that two vertical partially immersed fixed barriers
could totally reflect an incident wave of a certain frequency for certain values of
the geometric parameters, and they provided the frequency bands within which this
would occur. The more common phenomenon of total transmission was also shown,
but the vanishing of the transmission coefficient was new. Subsequently Newman
(1974) confirmed these results using a matched asymptotic expansion method valid
for closely spaced barriers in which he matched the far-field potential with a local
potential valid near the barriers and up to the interior free surface between them.
Physically this local solution described a uniform slug flow of the fluid between
the barriers (far enough from the ends of the plates) acting as a rigid body. This
solution can also be interpreted as the total reflection of an incident wave by a narrow
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Figure 2. Variation with non-dimensional wavenumber, kd , of: (a) |T | the transmission
coefficient for a fixed cylinder; (b) added mass, μ, and (c) radiation damping, ν, for a
heaving cylinder; (d) |T1| for a freely heaving cylinder. Draught to depth ratio, d/h = 0.2.
Curves show a/d of 4 (solid), 2 (long dashed), 1 (short dashed), 0.5 (dot-dashed), 0.2 (dotted).

rectangular cylinder constrained to move in heave and sliding between two parallel
vertical plates, which is very close to the problem under consideration.

A description of the full linear solution for scattering of an incident wave
from – and waves radiated by – a vertical rectangular cylinder in finite depth is
given in Appendix A. All the hydrodynamic coefficients necessary for determining T1

for the freely floating cylinder in addition to the real expression C+χ , were computed
for varying geometric parameters and the dimensionless wavenumber, kd . For a fixed
set of geometrical parameters, it is a simple matter to determine when T1 = 0, as
it corresponds to the point at which the function C + χ , crosses the kd-axis. The
non-dimensional form for C is

C = [(1 + μ) − (Kd)−1]/ν

where μ = a(ω)/M , ν = b(ω)/(ωM) and M = 2ρad is the mass of the rectangular
cylinder, coinciding with the definitions in Appendix A.

A sample set of results is given in figures 2(a)–2(c) where curves showing the
variation of |T | for a fixed rectangular cylinder, and μ and ν for a heaving rectangular
cylinder are plotted against kd for a range of values of cylinder aspect ratio, a/d .
The draught to water depth ratio is fixed at d/h = 0.2. These results are combined
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Figure 3. (a) The location of zeros of T1 in (kd, a/d) parameter space, with depth ratios
d/h = 0.1 (solid), 0.2 (long dash), 0.226 (short dash) and 0.3 (dotted). (b) The predicted
half-spacing between two cylinders, s/d = (b − a)/d , for a motion-trapped mode against a/d
with curves corresponding to (a).

according to equation (3.16) to give the curves for |T1| shown in figure 2(d). Although
the curves in figures 2(a)–2(c) display no remarkable features, curves of |T1| possess a
much more interesting behaviour. In particular, it is just possible to find zeros of T1

when a/d takes both small (0.2, 0.5) and large (4) values. The difficulty in discerning
zeros of T1 when a/d equals 1 and 2 is made evident in the comprehensive plot in
figure 3(a). Here, we trace zeros of T1 in (a/d, kd) parameter space, with each curve
now corresponding to a different choice of depth ratio d/h, ranging in value from 0.1
to 0.3. Thus, for d/h = 0.2, it can be seen that zeros of T1 exist only for a/d < 0.824
and a/d > 1.917. What is fascinating about the results shown in figure 3(a) is the
sensitive dependence on the depth of the fluid, with a value of d/h ≈ 0.226 dividing
the cylinder geometries into two regimes: those which possess zeros of transmission
for all lengths of cylinder and those which do not. Note also that where zeros of T1

exist they always occur at two values of kd for each value of a/d > 0. This follows
since it can be shown that C +χ < 0 (where it transpires that χ = −|R|/|T |) for both
large and small values of kd , so that it must vanish an even number of times, which
happens to be twice.

With reference to the earlier discussion in which the search for zeros of T1 for thin
rectangular cylinders was motivated, attention is drawn to the curve corresponding
to a/d = 0.2 in figure 2(d), which undergoes a sharp deviation from |T1| = 1 to
|T1| = 0, reminiscent of curves of transmission coefficient for closely spaced pairs
of surface-piercing vertical barriers (see Porter 1995 or Evans & Porter 1997, for
example).

In figure 3(b), we present a set of curves for which the wide-spacing approximation,
(2.3), has been used to plot values of s/d ≡ (b − a)/d against a/d corresponding
to the curves in figure 3(a). The ordinate s/d represents half the (non-dimensional)
predicted spacing between the interior vertical sides of a pair of rectangular motion
trapping cylinders. Taking figures 3(a) and 3(b) together allows one to read off, for any
choice of a/d , the values of kd and s/d (or b/d) at which motion-trapped modes are
predicted to occur, on the basis of the wide-spacing approximation. Alternatively, we
could have plotted s/d against kd instead of a/d in figure 3(b). When this is done, the
data almost exactly collapse onto a single line, namely ks = π, making it impossible
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to distinguish the different data sets. This is not unexpected, since ks = π corresponds
to a single wavelength occupying the space between two vertical-sided rectangular
cylinders and the resulting wave motion is approximately that of the fundamental
symmetric sloshing mode between two vertical walls. Note that it is possible to use the
wide-spacing approximation to predict smaller values of the spacing than those shown
in figure 3(b). However, these do not lead to exact motion-trapped mode solutions
and clearly violate the wide-spacing assumption (which formally requires ks 	 1).
We can also add other branches to figure 3(b) which represent larger spacings than
those shown and correspond to a larger number of oscillations between the cylinders.

It is a simple matter to use the results obtained above for two-dimensional wave
interactions with a cylinder of constant cross-section to predict the existence of
a three-dimensional axisymmetric motion trapped structure formed by the freely
heaving motion of a thick-walled floating cylindrical shell. There are again strong
arguments for the existence of motion-trapped modes here since it has been shown
(Shipway & Evans 2003) that there exist fixed body-trapped modes in the vicinity of
a pair of thin concentric shells. Just as for the closely spaced fixed vertical barriers
in two dimensions it is possible to use matched asymptotic expansions coupled with
a wide-spacing approximation appropriate for axisymmetric problems to construct
a trapped mode in the vicinity of closely spaced concentric cylinders. But here too,
the flow between the cylinders is slug-like and so once again, an example of fixed-
body-trapped modes in the vicinity of a pair of closely spaced concentric cylinders
can equally be regarded as a motion-trapped mode interior to the heaving of a ‘thin’
thick-walled circular cylinder. An argument in favour of motion trapping can also be
made using the fact that we have found that two-dimensional rectangular cylinders in
heave are capable of reflecting an incident wave of a particular frequency. For thick
cylinders of large radius b a wide-spacing argument can be made for this axisymmetric
problem in which the approximate form for the motion trapping frequency is given
by a modified version of (2.3) in which an extra factor of π/4 is added to the right-
hand side. See for example, Shipway & Evans (2003). Thus, the predicted relationship
between kd and a/d for axisymmetric motion-trapping structures of draught d and
inner to outer radius distance of 2a remain as in figure 3(a). However, the predicted
dependence of the inner radius of the circular shell, r1, on a/d can be inferred from
figure 3(b) via the relation r1/d = s/d + π/(4kd).

5. Exact methods for two dimensions
The wide-spacing approximation provides strong evidence for the existence of a

motion-trapping structure in the form of a freely floating catamaran formed by a pair
of identical vertical rectangular cylinders whose centres are separated by a distance 2b.
From symmetry it is clearly sufficient to consider a single freely heaving rectangular
cylinder next to a vertical wall on which the velocity potential satisfies a Neumann
condition, a process which gives rise to the approximate formula for the half-spacing
b in (2.3). To confirm the existence of motion-trapped modes, an exact linear theory
is required for this configuration from which the added mass and radiation damping
coefficients can be determined and the conditions (2.1) and (2.2) checked. An obvious
difficulty is that whereas condition (2.1) will be easily seen to be numerically satisfied
when the left-hand side changes sign, the same is not true of condition (2.2). Thus, the
process of deciding numerically that the non-negative radiation damping takes the
value zero is not an easy one. This difficulty can be overcome in the following manner.
At those frequencies for which b(ω) = 0, the complex amplitude of waves radiating to
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Figure 4. Exact parameters for generating motion-trapped modes. (a) The variation of kd with
a/d with depth ratios d/h = 0.1 (solid), 0.2 (long dash), 0.3 (short dash) and 0.4 (dot-dashed),
0.5 (dotted). (b) The variation of half-spacing between two cylinders, s/d = (b − a)/d with
curves corresponding to (a).

infinity is zero. With this in mind, we replace the original radiation problem by one
which has a real solution, in which the far field is taken to be of the form a0 sin kx

where a0 is now real but can take positive and negative values. For non-zero a0,
this new problem is entirely artificial and is purely a device for obtaining a robust
method for finding zeros of ν. But what is important is the fact that when a0 is zero,
then we have a boundary-value problem satisfying all the conditions required for the
damping to vanish. It is confirmed numerically that frequencies at which curves of
a0 pass through zero correspond to ν = 0 in the original problem. Moreover, whilst
the frequency at which a0 = 0 varies with the accuracy of the numerical scheme,
the existence of a zero of a0 is robust, providing yet further evidence that a zero of
damping does indeed exist. We used a similar procedure in a recent related problem
(Evans & Porter 2007). The changes to the formulation for the revised problem are
minor only and outlined at the end of Appendix B.

In figures 3(a) and 3(b) the predicted relationships between the non-dimensional
parameters kd , s/d and a/d for generating motion trapped modes were sketched as
curves for different depth ratios d/h, the results being based on the wide-spacing
approximation. In contrast, figures 4(a) and 4(b) now provide the exact values of kd ,
s/d and a/d for generating motion-trapped modes, for a different (but overlapping)
set of depth ratios of d/h = 0.1, 0.2, 0.3, 0.4 and 0.5. Comparing the results of the
two figures shows that there is only good agreement for a/d smaller than about 0.4.
Whilst the curves for d/h = 0.1 are qualitatively the same, the behaviour of the two
sets of curves in figures 3 and 4 with increasing d/h is altogether different, the exact
results suggesting a maximum value of a/d for motion-trapped modes to exist for
depths greater than the threshold value of d/h = 0.226 given by the wide-spacing
method. It is rare to observe the wide-spacing approximation perform so badly.

An explanation of the poor agreement between wide-spacing and exact results can
be made with reference to the behaviour of the added mass and damping coefficients
for two cylinders in heave at parameter values around the exact values. Thus, in
figure 5 we fix (as a particular example) d/h = 0.2, a/d = 0.5, b/d = 3.11348 and vary
kd . The precise value of b/d is chosen, because it implies (from our computations) that
a motion-trapped mode exists at kd = 1.23111. It can be observed from figure 5(a),
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Figure 5. (a) The variation of μ and ν with kd for a motion-trapped mode configuration of
d/h = 0.2, a/d = 0.5, b/d = 3.11348. (b) A blow-up around the exact trapping wavenumber
of kd = 1.23111 with curves of μ and ν joined by curves of f1(kd) ≡ (1 + μ) − (Kd)−1 and
f2(kd) ≡ 10a0.
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Figure 6. Exact parameters for generating motion trapped modes for axisymmetric circular
shells of inner radius r1, outer radius r2 = r1 + 2a and draught d . (a) The variation of
kd with a/d with depth ratios d/h = 0.1 (solid), 0.2 (long dash), 0.3 (short dash) and 0.4
(dot-dashed), 0.5 (dotted). (b) The variation of inner cylinder radius, r1/d = (b − a)/d with
curves corresponding to (a).

and in the magnified figure 5(b), that there is a sharp and dramatic variation in both
μ and ν (determined now from equation (B 7) in Appendix B) around the value of
kd = 1.221. The motion-trapped mode is determined numerically by simultaneously
requiring both the non-dimensional versions of (2.1) and (2.2), namely f1(kd) ≡
(1 + μ) − (Kd)−1 and ν, to be zero. As previously described, the latter condition
can be replaced by a0 = 0, provided the appropriate adjustments are made to the
formulation. Thus, a motion trapped mode corresponds to the curves of f1 and a0,
regarded as functions of kd , crossing the kd-axis at the same point, as shown in figure
5(b). The difficulty in getting both curves to cross at the same point is that the zero
of ν is associated with the large variation in both ν and μ that occurs at a nearby
value of kd and is attributed to the existence of a pole of the function μ + iν in the
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complex kd-plane close to the real line. Thus, it can be difficult to generate enough
independent variation between the values of μ and ν close to the point at which
ν = 0 in order to satisfy both conditions simultaneously.

Figure 6(a, b) shows the corresponding results for the thick axisymmetric cylinder
derived from the theory described in Appendix C where the same device was used
to track the trapped-mode frequencies as described above in two dimensions. It can
be seen that the figures are qualitatively similar to the two-dimensional case but the
trapped modes arise for larger values of inner shell radius, r1 than for half-spacing
s in that case. Some numerical inaccuracies associated with the computation of the
axisymmetric problem meant that we display a smaller range of results in figure 6
than in figure 5.

6. Conclusion
It has been shown that one way of predicting pairs of motion-trapping structures

is to first find a single freely floating body which totally reflects an incident wave in
its free motion. It was shown that it is necessary to have enough variable parameters
in the problem to enable the zero transmission condition to be satisfied. Thus for
a half-immersed freely floating semicircular cylinder in heave this was not possible,
but the extra geometric parameter of draught enabled zeros of transmission to be
found for a freely floating heaving vertical rectangular cylinder. Then wide-spacing
arguments can be used to obtain an approximation for the spacing required for a
motion-trapping structure in motion at the zero-transmission frequency comprised of
a pair of such cylinders. Exact multiple-interaction theory was used to confirm their
existence and it was shown that the wide-spacing approximation does not always
give reliable predictions for the values of frequency and spacing for motion-trapped
modes. A formulation was used to avoid difficulties in finding the zeros of the non-
negative radiation damping, replacing it by a separate condition which eliminates
wave radiation to infinity and is both easily determined numerically and robust to
inaccuracies in the numerical scheme. The ideas were extended to the case of a thick
axisymmetric circular cylinder and results obtained from both an approximate and
full linear theory obtained.

Appendix A. Scattering and radiation by a single two-dimensional cylinder
of rectangular cross-section

First, we consider the numerical method used to compute the various quantities
associated with a single fixed surface-piercing cylinder of rectangular cross-section of
width 2a and draught d in fluid of constant depth h.

We are interested in (i) the reflection and transmission coefficients due to a wave
incident on the fixed cylinder and (ii) the added mass and radiation damping for the
forced heave motion of the cylinder.

The method of solution is based upon using eigenfunction expansions in the
rectangular subdomains of the fluid and matching across the interfaces (being those
vertical lines extended from the sides of the cylinder down through the fluid). Using
methods described in, for example, Porter (1995), integral equations are formulated
for the horizontal component of velocity across the interfaces, which are subsequently
approximated by a variational technique (equivalent to Galerkin’s method) in which
the anticipated singularities are incorporated into the approximation to the unknown
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velocities. This results in a linear system of equations, truncated to a finite size, P ,
whose chosen value determines the level of accuracy of the solutions.

We suppress all detail of the formulation here, and simply provide the details
sufficient to define the resulting numerical system.

First we need to make some definitions. Thus we have

K = k tanh kh = −kn tan knh for n = 1, 2, . . . (A 1)

where K = ω2/g, k is the single positive real root of the above and kn are an increasing
sequence of positive real roots. Associated with these are

Nn =
1

2

(
1 +

sin 2knh

2knh

)

which can be used for n = 0, 1, . . . with k0 = −ik. Also,

μn = nπ/(h − d), n = 0, 1, 2, . . . .

We are required to determine the coefficients α(i)
p , p = 0, . . . , P and i = 1, 2, 3 from

the system of equations

P∑
p=0

α(i)
p Kpq = F

(i)
0q , q = 0, . . . , P , (A 2)

where

Kpq =

∞∑
n=1

[
F (1)

np F (1)
nq

knh
+

F (2)
np F (2)

nq

μn(h − d) tanh μna

]
(A 3)

and

F (1)
np = N−1/2

n

J2p+1/6(kn(h − d))

[kn(h − d)]1/6
for n � 1 (A 4)

with

F
(1)
0p = (−1)pN

−1/2
0

I2p+1/6(k(h − d))

[k(h − d)]1/6
(A 5)

where Jn(·), In(·) are the Bessel function and modified Bessel function of the first kind.
Also

F (2)
np =

√
2
J2p+1/6(nπ)

(nπ)1/6
for n � 1 with F

(2)
0p =

2−1/6


( 7
6
)
δ0p (A 6)

where 
(·) is the Gamma function. Also,

F
(3)
00 =

9

7

2−1/6


( 1
6
)
, F

(3)
01 = −54

91

2−1/6


( 1
6
)
, F

(3)
0p = 0 for p � 2. (A 7)

Using the values of α(i)
p determined from (A 2) above we now define

Sij =

P∑
p=0

α(i)
p F

(j )
0p , i, j = 1, 2, 3, (A 8)

and it can be shown that Sij = Sji , a consequence of the underlying self-adjoint
structure of the formulation.

Then the reflection and transmission coefficients are defined by

R = 1
2
(Rs + Ra), T = 1

2
(Rs − Ra)
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where the two equations

−ikh(e−ika − Rseika) = (e−ika + Rseika)S11 − bs
0S21 (A 9)

and

0 = (e−ika + Rseika)S12 − bs
0S22, (A 10)

combine to allow Rs and bs
0 (a coefficient of no particular relevance) to be determined.

To determine Ra , replaced Rs and bs
0 in (A 7) and (A 8) by Ra and ba

0 and solve
a corresponding problem but with tanhμna in (A 3) replaced by coth μna in the
definition of Kpq .

The non-dimensional heave added mass, μ = a(ω)/M , and radiation damping,
ν = b(ω)/(Mω) are defined as the real and imaginary parts of

μ + iν =
(a

d

) [
1
3
l−1 − bh

0 + l( 2
3

− AhS13 + bh
0S23 − lS33)

]
where l = (h − d)/a and

ikhAh = AhS11 − bh
0S21 + lS31

combines with

1 = AhS12 − bh
0S22 + lS32

to determine Ah and bh
0 . Here, Ah corresponds to the far-field radiated wave amplitude

in forced heaving of unit amplitude. The Haskind relation, in this context, translates
to the identity ν = (a/d)kh|Ah|2.

Appendix B. A pair of heaving two-dimensional cylinders of rectangular
cross-section

The method of solving for the heave added mass and radiation damping due to
a rectangular cylinder of width 2a and draught d , with centreline a distance b from
a vertical wall in fluid of finite depth h is again based on eigenfunction expansion
methods, similar to those used in Appendix A. Here, the situation is more complicated,
in that expansions are required in three subdomains and matching occurs over two
interfaces aligned with the vertical sections of the rectangular cylinder to yield a pair
of coupled integral equations, which are solved via Galerkin’s method. Again, we omit
the algebraic details and provide only those details needed to compute the required
added mass and radiation damping.

In matrix form, we are required to solve a system of linear equations for ten sets
of coefficients, α(i)

p , i = 1, . . . , 10, which are expressed as the solution to(
K (11)

qp K (12)
qp

K (21)
qp K (22)

qp

) (
α(1)

p α(3)
p α(5)

p α(7)
p α(9)

p

α(2)
p α(4)

p α(6)
p α(8)

p α(10)
p

)
=

(
F

(1)
0q 0 F

(2)
0q 0 −F

(3)
0q

0 F
(1)
0q 0 F

(2)
0q F

(3)
0q

)

(B 1)
(summation is implied by repeated suffices). In the above,

K (11)
qp =

∞∑
n=1

{
coth kn(b − a)

knh
F (1)

np F (1)
nq +

coth(2μna)

nπ
F (2)

np F (2)
nq

}
,

K (12)
qp = K (21)

qp = −
∞∑

n=1

cosech(2μna)

nπ
F (2)

np F (2)
nq
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and

K (22)
qp =

∞∑
n=1

{
1

knh
F (1)

np F (1)
nq +

coth(2μna)

nπ
F (2)

np F (2)
nq

}

The factors F (i)
np are the same as defined previously in (A 4)–(A 7). Once the coefficients

α(i)
p have been determined from (B 1), they are used to define the pair of 2×2 matrices

Si =

(
α(1)

p F
(i)
0p α(3)

p F
(i)
0p

α(2)
p F

(i)
0p α(4)

p F
(i)
0p

)
, Si2 =

(
α(5)

p F
(i)
0p α(7)

p F
(i)
0p

α(6)
p F

(i)
0p α(8)

p F
(i)
0p

)
for i = 1, 2 (B 2)

(summation is implied by repeated suffices), with two-vectors

S3 =

(
α(2)

p F
(3)
0p − α(1)

p F
(3)
0p

α(4)
p F

(3)
0p − α(3)

p F
(3)
0p

)
, S32 =

(
α(4)

p F
(3)
0p − α(5)

p F
(3)
0p

α(8)
p F

(3)
0p − α(7)

p F
(3)
0p

)
, (B 3)

Si3 =

(
α(9)

p F
(i)
0p

α(10)
p F

(i)
0p

)
, i = 1, 2, (B 4)

and the coefficient S33 = α(10)
p F

(3)
0p − α(9)

p F
(3)
0p .

Next we define the pair of two-vectors

A1 =

(
−b0 cos k(b − a)

a0

)
, A2 =

(
c0

−c0 − 2d0 − 2/l

)
(B 5)

in terms of four coefficients a0, b0, c0 and d0 which are determined from the four
linear equations (

−khb0 sin k(b − a)

ikha0

)
= S11 A1 + S12 A2 + lS13 (B 6)

where l = (h − d)/a, combined with(
d0l

2 + d0l

)
= S21 A1 + S22 A2 + lS23.

The non-dimensional heave added mass, μ, and radiation damping, ν, are then
determined as the real and imaginary parts of

μ + iν = −
(a

d

) [
4
3
(l−1 − l) + 2c0 + 2d0 + l

{
ST

31 A1 + ST
32 A2 + lS33

}]
(B 7)

where the superscript T denotes the transpose.
For the purposes of locating zeros of damping, a numerically robust approach,

outlined in § 4, replaces the condition ν = 0 with a0 = 0 where a0 is now real and can
take both positive and negative values (a0 is complex-valued in the system above).

The changes that the revised formulation enforces on the system above are trivial
and involve replacing (B 5) by

A1 =

(
−b0 cos k(b − a)

0

)
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and the left-hand side of (B 6) with(
−khb0 sin k(b − a)

kha0

)
.

Under this revised system, the resulting set of real coefficients {a0, b0, c0, d0} only have
a meaning when a0 = 0, i.e. can only be used to calculate μ when a0 = 0.

Appendix C. A heaving axisymmetric cylindrical shell of rectangular
cross-section

We consider an axisymmetrical shell of draught d , inner radius r1 = b − a and
outer radius r2 = b + a making heave oscillations in water of depth h. Our aim is
to determine the heave added mass and radiation damping. Again, the methods are
based on eigenfunction expansions, now in cylindrical domains.

The structure of the equations to solve is the same as (B 1) in Appendix B, but with
revised definitions of the matrix coefficients:

K (11)
qp =

r2

(h − d)

∞∑
n=1

{
I0(knr1)

knhI1(knr1)
F (1)

np F (1)
nq +

γn(r1, r2)

(nπ)Δn

F (2)
np F (2)

nq

}
,

K (12)
qp = −

∞∑
n=1

F (2)
np F (2)

nq

(nπ)2Δn

, K (21)
qp = −

∞∑
n=1

F (2)
np F (2)

nq

(nπ)2Δn

and

K (22)
qp =

r1

(h − d)

∞∑
n=1

{
γn(r2, r1)

(nπ)Δn

F (2)
np F (2)

nq +
K0(knr2)

knhK1(knr2)
F (1)

np F (1)
nq

}

where In(·) and Kn(·) are modified Bessel functions whilst

γn(r1, r2) = K0(μnr1)I1(μnr2) + K1(μnr2)I0(μnr1)

and

Δn(r1, r2) = −I1(μnr1)K1(μnr2) + I1(μnr2)K1(μnr1).

Definitions of kn, μn and F (i)
np , i = 1, 2, 3 can be found in Appendix A. Once the

ten sets of coefficients α(i)
p , i = 1, . . . , 10, have been determined from (B 1) with

the replacement for the matrix entries outlined above, then ‘S’ matrices, vectors and
coefficients are defined by the same set of equations (B 2)–(B 4) as in Appendix B.

Now define

A1 =

(
−b0J0(kr1)

a0H0(kr2)

)
and A2 =

(
c0

−c0 − d0 log(r2/r1) − λ

)
(C 1)

where

λ =
ab

(h − d)2
− r2

1

2(h − d)2
log

(
r2

r1

)
,

in which the set of four coefficients {a0, b0, c0, d0} are determined from the equation(
− [kh(h − d)J1(kr1)/r2] b0

− [kh(h − d)H1(kr2)/r1] a0

)
= S11 A1 + S12 A2 + S13 (C 2)
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combined with(
(h − d)2d0/(r1r2)

2ab/(r1r2) + (h − d)2d0/(r1r2)

)
= S21 A1 + S22 A2 + S23.

The non-dimensional heave added mass, μ and radiation damping ν are given by

μ + iν = − 1

2abd
(C1 + C2 + C3)

where

C1 = −ab(h − d) +
ab(b2 + a2)

2(h − d)
− r2

1 r
2
2 log(r2/r1)

4(h − d)

with

C2 = 2ab(h − d)
[
c0 + d0 log(r2/r1) + λ − 1

6

]
and

C3 = r1r2(h − d){ST
31 A1 + ST

32 A2 + S33} − (h − d)[2ab + d0(h − d)2]λ.

In order to numerically determine frequencies at which zeros of damping occur, it
is more convenient to revise the system presented above in a manner similar to that
described at the end of Appendix B. Thus, (C 1) is replaced by

A1 =

(
−b0J0(kr1)

a0J0(kr2)

)
,

and the left-hand side of (C 2) is replaced with(
− [kh(h − d)J1(kr1)/r2] b0

− [kh(h − d)J1(kr2)/r1] a0

)
.

Under this revised system, the coefficients {a0, b0, c0, d0} are all real, and ν = 0 is
equivalent to a0 = 0 where a0 can take both positive and negative values.
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